Cynicism Cynicism
首页
  • 前端学习笔记

    • 《Vue》笔记
    • 《TypeScript 从零实现 axios》
    • TypeScript
    • JS设计模式总结
    • 小程序笔记
  • 后端学习笔记

    • 《JavaWeb》
    • 《SSM》
    • 《瑞吉外卖》
    • 《Git》
    • 《SpringCloud》
    • 《黑马点评》
    • 《Spring原理》
    • 《JVM》
    • 《Java并发编程》
    • 《学成在线》
  • HTML
  • CSS
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 面试
  • 常见问题
  • 实用技巧
  • 友情链接
实习
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Cynicism

Java后端学习中的IKUN
首页
  • 前端学习笔记

    • 《Vue》笔记
    • 《TypeScript 从零实现 axios》
    • TypeScript
    • JS设计模式总结
    • 小程序笔记
  • 后端学习笔记

    • 《JavaWeb》
    • 《SSM》
    • 《瑞吉外卖》
    • 《Git》
    • 《SpringCloud》
    • 《黑马点评》
    • 《Spring原理》
    • 《JVM》
    • 《Java并发编程》
    • 《学成在线》
  • HTML
  • CSS
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 面试
  • 常见问题
  • 实用技巧
  • 友情链接
实习
收藏
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • 微服务简介
  • 服务注册发现
  • 配置管理与网关
  • RabbitMQ
  • ES-数据存储
  • ES-数据搜索
  • ES-数据分析
  • 微服务保护
  • 分布式事务
  • 分布式缓存
  • 多级缓存
    • 1. 多级缓存
    • 2. JVM进程缓存
    • 3. Lua语法入门
      • 3.1 变量和循环
      • 3.1.1 Lua的数据类型
      • 3.1.2 声明变量
      • 3.1.3 循环
      • 3.2 条件控制、函数
      • 3.2.1 函数
      • 3.2.2 条件控制
    • 4. 实现多级缓存
      • 4.1 OpenResty
      • 4.2 Redis缓存预热
    • 5. 缓存同步
      • 5.1 数据同步策略
      • 5.2 认识Canal
  • 服务异步通信
  • 《SpringCloud》笔记
cynicism
2023-07-02
目录

多级缓存

# 1. 多级缓存

传统缓存策略

传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库。但这样,请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈;同时一旦Redis缓存失效时,会对数据库产生冲击

多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻Tomcat压力,提升服务性能:

  • 浏览器访问静态资源时,优先读取浏览器本地缓存
  • 访问非静态资源(ajax查询数据)时,访问服务端
  • 请求到达Nginx后,优先读取Nginx本地缓存
  • 如果Nginx本地缓存未命中,则去直接查询Redis(不经过Tomcat)
  • 如果Redis查询未命中,则查询Tomcat
  • 请求进入Tomcat后,优先查询JVM进程缓存
  • 如果JVM进程缓存未命中,则查询数据库

在多级缓存架构中,Nginx内部需要编写本地缓存查询、Redis查询、Tomcat查询的业务逻辑,因此这样的nginx服务不再是一个反向代理服务器,而是一个编写业务的Web服务器了 这样的业务Nginx服务也需要搭建集群来提高并发,再有专门的nginx服务来做反向代理

可见,多级缓存的关键有两个:

  • 一个是在nginx中编写业务,实现nginx本地缓存、Redis、Tomcat的查询
  • 另一个就是在Tomcat中实现JVM进程缓存 其中Nginx编程则会用到OpenResty框架结合Lua这样的语言

# 2. JVM进程缓存

缓存在日常开发中启动至关重要的作用,由于是存储在内存中,数据的读取速度是非常快的,能大量减少对数据库的访问,减少数据库的压力。我们把缓存分为两类:

  • 分布式缓存,例如Redis:
    • 优点:存储容量更大、可靠性更好、可以在集群间共享
    • 缺点:访问缓存有网络开销
    • 场景:缓存数据量较大、可靠性要求较高、需要在集群间共享
  • 进程本地缓存,例如HashMap、GuavaCache:
    • 优点:读取本地内存,没有网络开销,速度更快
    • 缺点:存储容量有限、可靠性较低、无法共享
    • 场景:性能要求较高,缓存数据量较小

笔记

Caffeine是一个基于Java8开发的,提供了近乎最佳命中率的高性能的本地缓存库。目前Spring内部的缓存使用的就是Caffeine。GitHub地址:https://github.com/ben-manes/caffeine

Caffeine既然是缓存的一种,肯定需要有缓存的清除策略,不然的话内存总会有耗尽的时候。 Caffeine提供了三种缓存驱逐策略:

  • 基于容量:设置缓存的数量上限
  • 基于时间:设置缓存的有效时间
  • 基于引用:设置缓存为软引用或弱引用,利用GC来回收缓存数据。性能较差,不建议使用。

注意:在默认情况下,当一个缓存元素过期的时候,Caffeine不会自动立即将其清理和驱逐。而是在一次读或写操作后,或者在空闲时间完成对失效数据的驱逐。

# 3. Lua语法入门

概念

Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。官网:https://www.lua.org/

Nginx编程需要用到Lua语言,因此我们必须先入门Lua的基本语法。

# 3.1 变量和循环

# 3.1.1 Lua的数据类型

Lua中支持的常见数据类型包括:

Lua提供了type()函数来判断一个变量的数据类型

# 3.1.2 声明变量

🏷️Lua声明变量的时候无需指定数据类型,而是用local来声明变量为局部变量:

-- 声明字符串,可以用单引号或双引号,
local str = 'hello'
-- 字符串拼接可以使用 ..
local str2 = 'hello' .. 'world'
-- 声明数字
local num = 21
-- 声明布尔类型
local flag = true
1
2
3
4
5
6
7
8

Lua中的table类型既可以作为数组,又可以作为Java中的map来使用。数组就是特殊的table,key是数组角标而已

-- 声明数组 ,key为角标的 table
local arr = {'java', 'python', 'lua'}
-- 声明table,类似java的map
local map =  {name='Jack', age=21}
1
2
3
4

Lua中的数组角标是从1开始,访问的时候与Java中类似:

-- 访问数组,lua数组的角标从1开始
print(arr[1])
1
2

Lua中的table可以用key来访问:

-- 访问table
print(map['name'])
print(map.name)
1
2
3

# 3.1.3 循环

对于table,我们可以利用for循环来遍历。不过数组和普通table遍历略有差异。

  • 遍历数组:
-- 声明数组 key为索引的 table
local arr = {'java', 'python', 'lua'}
-- 遍历数组
for index,value in ipairs(arr) do
    print(index, value) 
end
1
2
3
4
5
6
  • 遍历普通table
-- 声明map,也就是table
local map = {name='Jack', age=21}
-- 遍历table
for key,value in pairs(map) do
   print(key, value) 
end
1
2
3
4
5
6

# 3.2 条件控制、函数

Lua中的条件控制和函数声明与Java类似。

# 3.2.1 函数

定义函数的语法:

function 函数名( argument1, argument2..., argumentn)
    -- 函数体
    return 返回值
end
1
2
3
4

# 3.2.2 条件控制

类似Java的条件控制,例如if、else语法:

if(布尔表达式)
then
   --[ 布尔表达式为 true 时执行该语句块 --]
else
   --[ 布尔表达式为 false 时执行该语句块 --]
end

1
2
3
4
5
6
7

与java不同,布尔表达式中的逻辑运算是基于英文单词:

# 4. 实现多级缓存

多级缓存的实现离不开Nginx编程,而Nginx编程又离不开OpenResty。

# 4.1 OpenResty

OpenResty

OpenResty® 是一个基于 Nginx的高性能 Web 平台,用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。

具备下列特点:

  • 具备Nginx的完整功能
  • 基于Lua语言进行扩展,集成了大量精良的 Lua 库、第三方模块
  • 允许使用Lua自定义业务逻辑、自定义库

官方网站: https://openresty.org/cn/

# 4.2 Redis缓存预热

Redis缓存会面临冷启动问题: 冷启动:服务刚刚启动时,Redis中并没有缓存,如果所有商品数据都在第一次查询时添加缓存,可能会给数据库带来较大压力。 缓存预热:在实际开发中,我们可以利用大数据统计用户访问的热点数据,在项目启动时将这些热点数据提前查询并保存到Redis中。

# 5. 缓存同步

大多数情况下,浏览器查询到的都是缓存数据,如果缓存数据与数据库数据存在较大差异,可能会产生比较严重的后果。所以我们必须保证数据库数据、缓存数据的一致性,这就是缓存与数据库的同步。

# 5.1 数据同步策略

缓存数据同步的常见方式有三种: 设置有效期:给缓存设置有效期,到期后自动删除。再次查询时更新

  • 优势:简单、方便
  • 缺点:时效性差,缓存过期之前可能不一致
  • 场景:更新频率较低,时效性要求低的业务 同步双写:在修改数据库的同时,直接修改缓存
  • 优势:时效性强,缓存与数据库强一致
  • 缺点:有代码侵入,耦合度高;
  • 场景:对一致性、时效性要求较高的缓存数据 **异步通知:**修改数据库时发送事件通知,相关服务监听到通知后修改缓存数据
  • 优势:低耦合,可以同时通知多个缓存服务
  • 缺点:时效性一般,可能存在中间不一致状态
  • 场景:时效性要求一般,有多个服务需要同步

而异步实现又可以基于MQ或者Canal来实现: 1)基于MQ的异步通知:

解读:

  • 商品服务完成对数据的修改后,只需要发送一条消息到MQ中。
  • 缓存服务监听MQ消息,然后完成对缓存的更新 依然有少量的代码侵入

2)基于Canal的通知 解读:

  • 商品服务完成商品修改后,业务直接结束,没有任何代码侵入
  • Canal监听MySQL变化,当发现变化后,立即通知缓存服务
  • 缓存服务接收到canal通知,更新缓存 代码零侵入

# 5.2 认识Canal

Canal [kə'næl],译意为水道/管道/沟渠,canal是阿里巴巴旗下的一款开源项目,基于Java开发。基于数据库增量日志解析,提供增量数据订阅&消费。GitHub的地址:https://github.com/alibaba/canal

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:

  • 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。

编辑 (opens new window)
#springcloud
上次更新: 2025/05/12, 04:51:03
分布式缓存
服务异步通信

← 分布式缓存 服务异步通信→

最近更新
01
JVM调优
06-03
02
Linux篇
03-30
03
Kafka篇
03-30
更多文章>
Theme by Vdoing | Copyright © 2023-2025 Cynicism | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式